注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

预制直埋保温管的家园

预制直埋保温管专家tjpipe将温暖广布全国

 
 
 

日志

 
 
关于我

tjpipe:86年毕业于天津大学就业于天津管道集团保温管厂。参与从丹麦,瑞典,芬兰,德国引进预制直埋保温管。翻译保温管生产资料,设计资料,施工资料,编译第一部预制直埋保温管设计资料,编译第一部预制直埋保温管施工及验收规范,研制蒸汽直埋保温管。为保温管,管件生产,保温管安装建模。组建天津力峰发展有限公司。组建新疆力峰保温管有限公司。成立天津派璞保温管有限公司。 生产预制直埋保温管直埋蒸汽保温管。无补偿安装。 微信号:tjpipe.

网易考拉推荐

供热管网设计及防腐分析  

2017-06-08 11:08:52|  分类: 默认分类 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
供热管网设计及防腐分析
2017年06月08日 - tjpipe - 预制直埋保温管的家园
一、城市集中供热管网现状及特点
随着国民经济的迅速增长,城市化建设进程逐渐加快,其最显著的特点是大中城市不断向周边县市扩展。城市的扩展必然要新建和翻新许多工民建筑,供热管网也需要不断扩展与更新。但是,供热管网在建设之初考虑并不周全,其扩展能力远远满足不了用户的需求。为了节约成本,供热管网多是一段一段地施工,呈单一枝状延伸。而为了满足一些特殊用户的需要,甚至采取加粗管道的办法,出现了二次网管径大于主管网管径的不合理现象。供热管网的合理布局是城市建设和发展的前提条件。因此,必须对其进行合理地优化设计。国城市集中供热管网的特点主要是热用户分布区域广、分支多。在管网发生事故时,通常允许有若干小时的停供修复时间。同时有些热网为提高供热可靠性和应付供热发展的不确定性,在规划设计时就将热网像市政给水管网一样成网格状布置,而这样存在一定的问题,水力工况和控制十分复杂。因此,应结合供热管网的特点,对城市集中供热管网进行优化设计。
2017年06月08日 - tjpipe - 预制直埋保温管的家园
二、供热管网的优化设计
供热管网优化可分为三个方面,其一是管线布局优化,其二是管管径设计优化,其三是管理运行的优化。把握好这三个方面的优化设计,将极大提高供热管网的运行稳定性,同时也为城市的科学规划奠定了良好的基础。
1、管线的布局优化
管网的管线布局上必须达到两个目标,即技术上要可靠,经济上要合理。技术上可靠是指管线应少穿主要交通线,一般平行于道路中心线并应尽量敷设在车行道以外的地方,地上敷设的管道,更要达到不影响城市环境美观,不妨碍交通的目标;管线还应尽量避开土质松软地区、地震断裂带、滑坡危险地带以及地下水位高等不利地段;供热管道与各种管道、建筑物应协调安排相互之间的距离,保证运行安全、施工及检修方便。经济上合理是指要注意管线上的阀门、补偿器和某些管道附件的合理布置;主干线应尽量走热负荷集中区,尽可能使其数量减少。
2、管径的设计优化
在管线布局、管径设计和管网运行这三部分中,管径的优选是优化设计的核心问题。在管径的设计优化过程中,要根据工程实际给定管径的上限,使管径能在合理的范围内取值。管网设计时,各管段的直径是根据供热管网各管段的计算流量和比压降范围来选定,而流量大小最终由热负荷而确定,管径确定前,需要对各管段的现有热负荷进行准确计算,对负荷将来的增容进行合理预测。根据流动力学性质,管径愈小产生的流动阻力愈大,输送过程消耗越大,生产成本变高。相反管径愈大产生的流动阻力愈小,生产成本变低,但由于使用较粗管道,大大增加了基建投资。因此,衡量两种情况的得失,最终选择两者兼顾的方案。
3、管网的运行优化
从我国各城市集中供暖的情况来看,经济性差、浪费严重是最显著的特点。而随着供暖技术的不断发展,各种新的供热系统被应用,供热管网的调节工作日益受到重视。目前,在调节工作中普遍遇到的问题是供热管网冷热不均的现象,这一现象的主要原因是水力失调所致。换句话说,管网内水力平衡是管网系统平稳运行的关键要素。消除水力失衡的办法是加装动态调控设备,利用其预设功能对各个环路进行调节。这种设备不仅实现了自动调控,还不影响其他环路的用热量,也不产生噪音或振动。但是不能过分依赖这种设备,有的时候可能因某些原因而出现稳态失调,所以使用动态系统时一定要注意对稳态失调的防范。
2017年06月08日 - tjpipe - 预制直埋保温管的家园
三、供热管网的防腐
管道的腐蚀,轻则洞穿管壁造成渗漏,重则管壁无法承受热媒压力而爆炸,严重危害用户的安全。近几年供热管网普遍使用直埋预制保温管,这种管道敷设技术施工方便、造价低且不影响城市环境美化。然而预埋管道一旦腐蚀,极难查出泄漏点,给维修工作带来了极大不便。当然,这种方法的后期维护成本之大也是显而易见的。因此,要对供热管道的腐蚀问题引起足够重视,将管道的腐蚀程度降到最低,以提高企业的经济效益。
1.供热管网腐蚀的主要因素
3.1.1 水中溶解氧的浓度
《低压锅炉水质标准》对大于95℃的热水锅炉用水有严格规格,不允许水中的溶解氧大于0.1 mg/L。通常的工业用水pH一般在6.0~9.0之间,在这种情况下,水中的饱和氧正是一种去极剂,可以氧化管道形成铁锈。有资料显示,如果水中溶解氧含量低于0.1 mg/L,那么氧腐蚀速度约为0.03 mm/a,也就是说普通供热管网的使用寿命在三十年以上。然而如果水中溶解氧含量达到8 mg/l时,氧腐蚀速度约为1.2 mm/a,供热管网的使用寿命可想而知了。因此,水中溶解的氧含量是防止管网腐蚀的措施之一。
3.1.2 水的酸碱度
一般来讲,pH在4.0~10.0之间,管网的腐蚀速度主要受水中的溶解氧含量的影响。pH4.0~7.0之间主要是缓慢的吸氧和析氢的反应,腐蚀慢且均匀;pH7.0~10.0之间主要是氧的去极化和氢氧化亚铁氧化反应,这些反应极其缓慢,甚至在接近10.0时,金属表层形成的保护层具有极强的防腐作用。然而,在pH<4.0时,析氢反应就会强烈,此时的腐蚀速度急剧增长;在pH>10.0时,会出现局部腐蚀过度的情况,这与孔蚀和溃疡十分相似。
3.1.3 水的温度
水温也是管网腐蚀的重要因素。根据化学动力学规律,当温度升高时金属离子活化能变大,化学反应速度加快。供热管网是封闭系统,热媒温度在90℃以上,这时电解质的电阻降低,Fe2+在水溶液中的速度加快,从而加速了腐蚀。有关资料显示,如果水溶解氧给定,温度每增加30℃,腐蚀速度将增加一倍。
3.1.4 盐的浓度
在供热管网内使用的是纯化水,而不是支离子水。所以当水中盐浓度变高,导电能力就会增加,同时腐蚀也会随之增加,这种状态会一直持续到盐的浓度十分高而抑制氧化反应。供热管网用的纯化水盐浓度不会很高,所以始终处于加速腐蚀的状态,可见盐浓度也是不可忽略的因素。
2.供热管网的防腐措施
3.2.1 供热管网外的防腐
① 选择合理的保温材料。管网外腐蚀多是管周湿度过大引起的,所以选择保温材料时要注意吸水性,尽量选用吸水性较小的材料。
② 管道外保护层要加设防水层,尽量使外界水无法进入到保温层中。
③ 在地沟敷设时,需保证地沟干燥通风且有排水措施,可能减少预埋管道周围的含湿量。
④ 选择合理的介质温度。高温送热固然可以起到一定的升温作用,减少管道外腐蚀,但会加速管道内腐蚀。所以应进行经济分析之后选择最佳的介质温度。
3.2.2 供热管网内的防腐
① 降低溶解氧浓度。由分析可知,供热管网内部腐蚀主要原因是溶解氧,因此必须投入有效的除氧系统,使热媒始终达准。
② 调节管网的pH,使其处于合理范围内。
③ 严格控制管网的涌漏,如有发现立即解决,防止补水过多引起腐蚀。
④ 管网在停运期间,要将内部水全部放出,然后充满新的经化学处理、除氧的软化水。如果再加入缓蚀剂,效果将更好。
2017年06月08日 - tjpipe - 预制直埋保温管的家园
你知道暖气片的正常使用压力是多少吗?
暖气片的正常使用压力
1.暖气片体系装置完结试压 :暖气片装置结束后应进行气密性实验,会运用1.2Mpa的压力对暖气片进行测验,检查暖气片本体和各个螺纹衔接处是不是有渗漏,没有渗漏现象即为合格。
2.暖气片体系供暖压力:暖气片体系在运用过程中,供暖压力不能超越1.0Mpa,超越这个压力后,暖气片体系会出现爆裂、暖气片接口漏水等问题。
3.钢制暖气片供暖压力:钢制暖气片在运用过程中,供暖压力最高是0.8Mpa。在供暖过程中,钢制暖气片供暖压力不能超越这个最高值。
4.铜铝复合暖气片供暖压力:铜铝复合暖气片在运用过程中,供暖压力最高是1.0Mpa。在供暖过程中,铜铝复合暖气片供暖压力不能超越这个最高值。
5.暖气片出厂测验压力:暖气片在出产过程中,为了测验暖气片的气密性,通常都会对暖气片进行1.8Mpa的压力测验,这个测验时刻会继续1-3分钟。
6.集中供暖压力:北方城市采暖通常都是选用集中供暖,而集中供暖压力通常是0.4-0.6Mpa,这个压力能使供暖水高速输送到用户家庭,也不会伤害到暖气片。
7.独立供暖压力:南边城市采暖通常都是选用独立供暖,而独立供暖0.2Mpa,这个压力只合适家庭独立供暖体系运用。
2017年06月08日 - tjpipe - 预制直埋保温管的家园
间接式供热系统的初调节
间接供热系统的初调节分为一次系统初调节和二次系统初调节,初调节时应先调节一次系统,后进行二次系统的调节,为减少初调节时的盲目性和提高调节效果,在调节前应分别对一次和二次系统进行准确的水利计算,然后按计算结果进行调节。 
1一次系统的初调节主要是利用换热站内或管道上设置的检测仪表(流量计、压力表等)对网路上或换热站内的调节阀按水利计算结果进行反复调整。应注意的是对二次管较长或保温不好的用户进行初调节时,其调节量应包括为补偿二次管热换失而增加的流量。
2二次系统的初调节同直接式供热系统的初调节一样,即借助各种检测仪表,按水力计算结果,先对管上或热用户入口处各阀门进行调节,然后再调节用户室内部分的各主管、支管阀门。为保证各用户得到所需流量初调节常要反复进行。 
根据调节地点不同,供热系统的运行调节分集中调节、局部调节和个体调节三种方式。集中调节在热源处集中运行;局部调节在热力站或用户引入口进行;而个体调节是直接在散热设备(散热器等)处进行的调节。其中集中或局部调节方式又有如下几种: 
A.质调节:保持流量不变,用改变网路供水温度来调节的方法。
B.量调节:保持供水温度不变,用改变网路循环水量来调节的方法。
C.分阶段改变流量的质调节:按室外温度高低把供热期分成几阶段,在不同阶段保持一定流量情况下进行质调节的方法。
D.间歇调节:通过改变每天供热时数来调节的方法。 
1一次(高温水)系统的运行调节:由于一次系统的水利工况较易调节,系统压力可调范围大,因此其运行调节应采用质调与量调并用,在保证最不利点压差足够的情况下,尽量采用量调的方法,特别是供热初期和后期应以量调为主,供热中期以质调为主,量调为辅。 
2二次(低温)系统的运行调节:间接式供热系统中的每一个独立的二次系统实际上是一个小型直接式供热系统,也是以质调为主。一个间接式供热系统由几十个或数百个二次系统,这些系统运行调节要求同步进行才能达到预期效果,因此人工调节方法无法实现,应采用自动控制方法。这样的自控系统一般由室外温度传感器,一个单板机和一个自动调节阀组成,它可根据输入单板机内的运行曲线,按室外温度变化对一次系统供水量进行自动调节,来控制二次系统的供水温度,达到对二次系统质调的目的。 
综上所述,关于供热管的技术管理问题,只是根据供热的实际情况,个人在工作运用中的感受看法以及不成熟的管理经验进行浅谈,以供同行校正指导。
2017年06月08日 - tjpipe - 预制直埋保温管的家园
锅炉运行难题14问14答
问题一
水位计的平衡容器及汽、水连通管为什么要保温?
保温的目的主要是为了防止平衡器及连通管受大气的冷却散热,使其间的水温下降,与汽包内的水相比产生较大的重度差,而这种重度差越大,水位计的指示与汽包内的真实水位误差越大,所以要在这些部位保温,以减小指示误差。
问题二
锅炉运行中为什么要控制一、二次汽温稳定?
锅炉运行中控制稳定的一、二次汽温对机组的安全经济运行有着极其重要的意义。当汽温过高时,将引起过热器、再热器、蒸汽管道及汽轮机汽缸、转子等部分金属强度降低,导致设备的使用寿命缩短。严重超温时,还将使受热面管爆破。若汽温过低,则影响热力循环效率,并使汽轮机未级叶片处蒸汽湿度过大,严重时可能产生水击,造成叶片断裂损坏事故。若汽温大幅度突升突降,除对锅炉各受热面焊口及连接部分产生较大的热应力外,还将造成汽轮机的汽缸与转子间的相对位移增加,即膨胀差增加,严重时甚至发生叶轮与隔板的动静摩擦,造成剧烈振动。此外汽轮机两侧的汽温偏差过大,将使汽轮机两侧受热不均匀,热膨胀不均匀。因此,锅炉运行中对汽温要严密监视、分析、调整,用最合理的方法控制汽温稳定。
问题三
锅炉运行中引起汽温变化的主要原因是什么?
1燃烧对汽温的影响。炉内燃烧工况的变化,直接影响到各受热面吸热份额的变化。如上排燃烧器的投、停,燃料品质和性质的变化,过剩空气系数的大小,配风方式及火焰中心的变化等,都对汽温的升高或降低有很大影响。
2负荷变化对汽温的影响。过热器、再热器的热力特性决定了负荷变化对汽温影响的大小,目前广泛采用的联合式过热器中,采用了对流式和辐射式两种不同热力特性的过热器,使汽温受锅炉负荷变化的影响较小,但是一般仍是接近对流的特性,蒸汽温度随着锅炉负荷的升高、降低而相应升高、降低。
3汽压变化对汽温的影响。蒸汽压力越高,其对应的饱和温度就越高;反之,就越低。因此,如因某个扰动使蒸汽压力有一个较大幅度的升高或降低,则汽温就会相应地升高或降低。
4给水温度和减温水量对汽温的影响。在汽包锅炉中,给水温度降低或升高,汽温反会升高或降低。减温水量的大小更直接影响汽温的降、升。
5高压缸排汽温度对再热汽温的影响。再热器的进出口蒸汽温度都是随着高压缸排汽的温度升降而相应升高、降低的。
问题四
什么叫热偏差?产生热偏差的原因有哪些?
在并列工作的受热面管子中,某根管内工质吸热不均的现象叫热偏差。对于管组中,工质焓值大于平均值的管子叫做偏差管。过热器产生热偏差的原因主要是热力不均和水力不均两方面的原因造成的。
问题五
什么叫热力不均?它是怎样产生的?
热力不均就是同一受热面管组中,热负荷不均的现象。热力不均既能由结构特点引起,也能由运行工况引起。如沿烟道宽度烟温分布不均和烟速不均的现象;受热面的蛇形管平面不平或间距不均造成烟气走廊;受热面的积灰,结渣、炉膛火焰中心偏斜;运行操作调整不良使火焰偏斜、下移、抬高等,都将造成热力不均。
1保证蒸汽参数达到额定并且稳定运行。
2保证着火稳定,燃烧中心适当,火焰分布均匀,不烧坏设备,避免积灰结焦。
3使锅炉和机组在最经济条件下安全运行。
问题六
什么叫锅炉的储热能力?储热能力的大小与什么有关?
当外界负荷变动而锅炉燃烧工况不变时,锅炉工质、受热面及炉墙能够放出或吸入热量的能力叫做锅炉的储热能力。
储热能力的大小主要取决于锅炉的工作水容积及受热面金属量的大小,并且与锅炉的蒸汽压力有关。即工作水容积越大,受热面金属量越多,蒸汽压力越低,锅炉的储热能力越大。对于采用重型炉墙的锅炉,储热量还与炉墙有关。
问题七
锅炉的储热能力对运行调节的影响怎样?
当外界负荷变动时,锅炉内工质和金属的温度、热量等都要发生变化。如负荷增加而燃烧末及时调整时使汽压下降,则对应的饱和温度降低,锅水液体热相应减少,此时锅水以及金属内蓄热放出将使一部分锅水自身汽化变为蒸汽。这些附加蒸发量的产生能起到减缓汽压下降的作用。所以储热能力越大则汽压下降的速度就越慢。与此相反,当燃烧工况不变,负荷减少使汽压升高时,由于饱和温度升高,工质和金属就将一部分热量储存起来,使汽压上升的速度减缓。因此,锅炉的储热能力对运行参数的稳定是有利的。但是当锅炉调节需要主动变更工况而改变燃烧率时,锅炉的负荷、压力、温度则因有储热能力而变化迟钝,不能迅速适应工况变动的要求。
问题八
运行中为什么要定期校对水位计?
因为锅炉运行中汽包水位是以就地布置的一次水位计为准的,而运行人员在控制盘上是根据低置水位计来控制水位,调整给水量的;由于低置水位计需要较多的传递环节、转换过程和设备,有时难免在某个环节出现一些异常、故障,影响了水位指示的正确性,而造成各个低置水位计之间的误差。因此必须定期根据汽包就地水位计的指示,校对低置水位计的正确性,防止因水位监视不准确而引起水位事故发生。
问题九
定期排污有哪些规定?
1锅炉的定期排污,应根据化学值班员的通知,并在实施监护的情况下进行操作。
2排污必须在征得主值班员同意后进行。
3排污操作人员的穿戴应符合安现要求。操作场所应有照明,通道无杂物堆积,在排污装置有缺陷时,禁止排污操作。
4使用专门的扳手操作并不准加套管。
5操作应逐一回路进行,并按规定的时间执行。
问题十
燃烧自动调节或压力自动调节投运项注意什么?
燃烧自动调节或压力自动调节投入运行时,必须注意监视其工作情况,遇有工况变化及重大操作,必须将其解列。压力自动调节投入时,必须保持下两层给粉机在稳定转速(500r/min 以上)运行,以保证稳定的火焰。
问题十一
锅炉熄火后应做哪些安全措施?
1继续通风5min。排除燃烧室和烟道可能残存的可燃物,然后关闭各风门并停止送、引风机运行,以防由于冷却,造成汽压下降过快。
2熄火后保留一、二级旁路或开启一级旁路和再热器向空排汽,10min后关闭,以保持过热器和再热器不致超温。
3停炉后应严格控制锅炉的降压速度,采取自然泄压方式(即随停炉后的冷却自行降压),严禁采取开启向空排汽等方式强行泄压。以免损坏设备。
4停炉后当锅炉尚有压力和辅机留有电源时,不允许对锅炉机组不加监视。
5为防止锅炉受热面内部腐蚀,停炉后应根据要求做好停炉保护工作。
6冬季停炉还应做好设备的防冻工作。
问题十二
热炉放水如何操作?
以SG400/13.7锅炉为例:
1锅炉滑停到熄火前,汽包压力应不大于1.5MPa,汽包水位维持在0~50mm,灭火后汽压降到1MPa,开启过热器疏水门,通知汽机关闭一、二级旁路。
2锅炉熄火后各风门、挡板、人孔门、看火门等均应严密关闭。
3锅炉熄火前开始抄录汽包各点壁温,以后每隔半。时抄录一次,直至汽压降到零以后4h为止。
4锅炉熄火后60min,开启大直径下降管放水门(一次门开足,直通门开1/4圈),微开事故放水门进行放水,放水至电接点水位计指示为-250mm时,再继续放30min,然后关闭各放水门,使汽包内的水基本放完。
5锅炉熄火后4h,屏式过热器后烟温不大于400℃,汽包压力在0.8MPa以下,汽包上、下壁各测点温度不大于200℃,进行锅炉水冷壁与省煤器放水。
6开启各水冷壁下联箱、大直径下降管放水门(一次门开足,直通门开1/4圈)、事故放水门,同时开启省煤器放水门1/8圈。严格控制锅炉泄压速度0.8~0.3MPa所需时间一般为2~2.5h; 0.3~OMPa所需时间一般为3h。
7当汽包压力降到零时,开启所有空气门和微开联箱向空排汽门,同时开启给水操作台和减温水系统放水门。
8在带压热炉放水过程中,汽包上、下壁温差最大值不得超过40℃,当温差达到40℃时,应暂停放水,待温差稳定后,重新放水。
9当炉膛内有大块焦渣包住炉管或炉膛敷设的卫燃带时,应根据具体情况,适当推迟放水时间,减缓放水速度,以防止该处炉管过热。
10停炉前检查省煤器再循环门是否关闭严密,以免给水进入汽包,造成汽包下壁温度降低。
11停炉后应开后再热器向空排汽门和冷段疏水门。
12在锅炉放水过程中,应检查各处膨胀正常。
问题十三
锅炉正常停运后,为什么要采用自然降压?
由于水蒸气在一定压力下具有一定的饱和温度,当压力变化时,饱和水、饱和汽的温度也相应发生变化。如果锅炉停炉后压力下降过快,则饱和水、饱和汽的温度也大幅度下降。由于在较低压力时饱和温度对压力的变化率较高,又因汽包上壁与饱和汽接触、下壁与饱和水接触,水的导热系数比汽大,则汽包下壁的蓄热量很快传给水,使汽包下壁温度接近于压力下降后新的压力下的饱和温度,而汽包上壁传热效果差维持较高的温度,汽包上壁温高于下壁温,汽压下降越快,汽包上、下壁温差越大。同时汽压下降速度过快,其对应的饱和温度也下降加快,水冷壁、省煤器及联箱的壁温下降也越快,由于急剧冷却、收缩将会产生很大温度应力,局部接头、焊口处易产生裂纹,所以锅炉正常停运后要采取自然降压。当锅炉正常熄火停运后,应关闭所有汽水门,关闭烟道挡板、人孔门,使锅炉处于密闭状态,自然冷却降压。
问题十四
为什么无论是正常冷却,还是紧急冷却,在停炉的最初6h内,均需关闭所有烟、风炉门和挡板?
停炉后的正常冷却和紧急冷却,在停炉后的最初6h内是完全相同的,均需关闭所有烟、风炉门和挡板。两者的区别在于正常冷却时,可在停炉6h后开启引、送风机的挡板进行自然通风,而紧急冷却时,允许在停炉6h后启动引风机通风和加强上水、放水来加速冷却。
制约停炉冷却速度的主要因素,是停炉后汽包不得产生过大的热应力。与点火升压时蒸汽和炉水对汽包加热相反,停炉后因汽包外部有保温层,汽包壁温下降的速度比蒸汽和炉水的饱和温度下降速度慢,是上部的蒸汽和下部的炉水对汽包壁进行冷却。因炉水对汽包壁的放热系数较大,汽包下半部的壁温下降较快,而饱和蒸汽在汽包上半部的加热下成为过热蒸汽。过热蒸汽不但导热系数很小,而且因其温度比他和蒸汽温度高,密度比饱和蒸汽小,无法与饱和蒸汽进行自然对流。所以,蒸汽对汽包上壁的放热系数很小,汽包上半部的温度下降较慢。汽包上、下半部因出现温差产生向上的香蕉变形而形成热应力。
在停炉初期汽包形成较大热应力时,汽包的压力还较高,两者叠加所产生的折算应力较大。因此,停炉初期过大的热应力会危及汽包的安全。
由于汽包热应力的大小,主要取决于蒸汽和炉水饱和温度下降的速度。所以,降低汽包热应力的最有效方法是延缓汽包压力下降的速度。停炉后的最初6h内,关闭所有烟。风炉门和挡板是防止汽包压力下降过快的最好、最简单易行的方法。
停炉6h内,因炉墙散热和烟囱仍然存在引风能力,冷空气从烟、风炉门、挡板及炉管穿墙等不严密处漏入炉膛,吸收热量成为热空气后从排囱排出。所以,即使是关闭所有烟、风炉门挡板,汽包压力仍然是在慢慢下降。停炉6h后,汽包压力已降至很低水平,即使启动引风机通风和加强上水、放水加快冷却,汽包的热应力也较小,而且此时因汽包压力很低,其两者叠加的折算应力也较小,已不会对汽包的安全构成威胁。
2017年06月08日 - tjpipe - 预制直埋保温管的家园
  评论这张
 
阅读(4)| 评论(1)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017